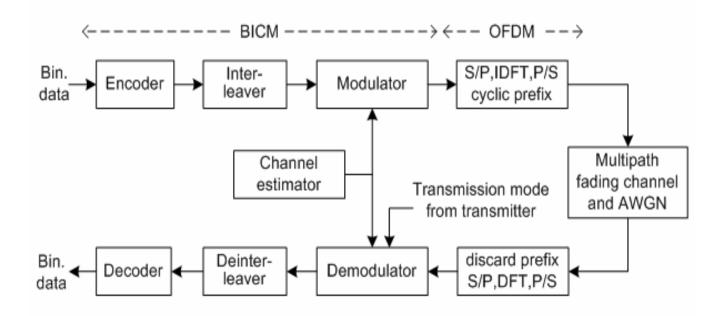
Adaptive bit-loading scheme for BICM-OFDM system

Dong Chan Park and Suk Chan Kim School of Electrical and Computer Engineering Pusan National University

CommSys Lab. PNU


BICM-OFDM system

- Data transmission over wireless channel is limited by several reasons including multipath fading.
- OFDM system overcome ISI caused from multipath fading using large number of subcarrier and guard interval.
- Channel coding is essential for OFDM system to cope with faded subcarriers.
- BICM is suitable for OFDM because of capacity improvement in fading channel using bit-interleaver and simple encoder/decoder

Adaptive transmission for BICM-OFDM

- Adaptive transmission increase bandwidth efficiency by adjusting transmission parameter depending on channel state.
- Adaptive OFDM system adapt modulation or power of each subcarrier under the condition of constant BER or constant throughput.
- We consider constant throughput adaptation and minimize BER bound.
 - Code rate and power are fixed for simplification of adaptive algorithm.

Adaptive BICM-OFDM system

Adaptive BICM-OFDM system (2)

• OFDM part of the system is represented by a set of parallel Gaussian channel.

$$y_k = h_k x_k + n_k$$
, $k = 0, 1, \dots, N-1$

- We assume that transmitter and receiver know the channel state information (CSI) perfectly.
- Modulator choose modulation level for each subcarrier according to CSI and maps coded bits to QAM symbol using Gray labeling.
 - Demodulate produces the bit metric for decoder.

$$\min_{z_k \in \chi_b^i} |y_k - h_k z_k|^2 \qquad k = 0, 1, ..., N - 1$$

 $i = 1, 2, ..., m_k$

Adaptation algorithm

Adaptation problem is to minimize BER under the constant throughput.

 $\begin{array}{l} \underset{m_0,m_1,\ldots,m_{N-1}}{Min} BER \\ m_k: \text{ the number of coded bits for subcarrier k} \\ subject to \sum_{k=0}^{N-1} m_k = N_{cbps} \\ \end{array} \qquad \begin{array}{l} m_k: \text{ the number of coded bits for Subcarrier k} \\ N_{cbps}: \text{ total coded bits for OFDM symbol} \\ \end{array}$

Assuming ideal bit interleaving, pairwise error probability of adaptive OFDM-BICM system is obtained by Chernoff bound.

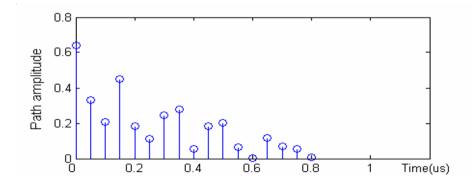
$$f(d, \mu, \chi) \le E_{\underline{x}, \underline{S}, \underline{U}} [\exp(-\sum_{n=1}^{d} \frac{|\dot{h_n}|^2}{4\sigma^2} |x_n - \hat{z}_n|^2)]$$
$$= \left(\frac{1}{N_{cbps}} \sum_{k=0}^{N-1} m_k E_{i, b, x} [\exp(-\frac{|\dot{h_k}|^2}{4\sigma^2} |x - \hat{z}|^2)]\right)^d$$

Adaptation algorithm (2)

Using Lagrange optimization, our adaptation problem is replaced by

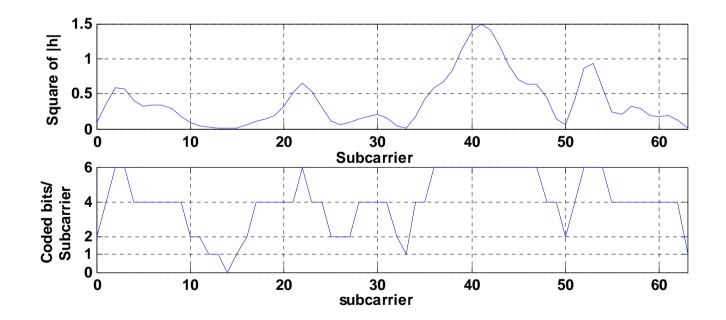
- Lagrange multiplier λ is decided to satisfy the give constraint of total coded bits for OFDM symbol.
- Lambda theory used to find λ for discrete resource allocation problem.

Finding λ using Lambda theory

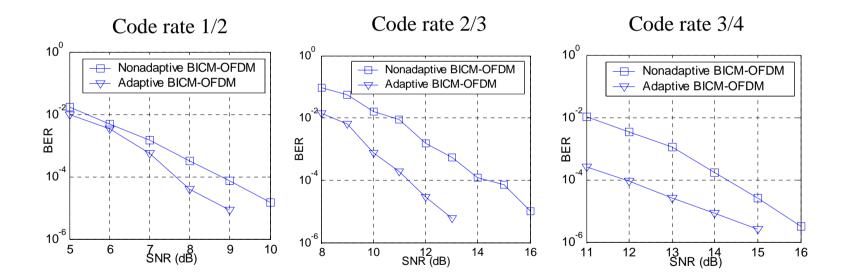

Example of finding λ iteratively given $N_{cbps} = 256$

iteration	λ	$\sum\nolimits_{k=0}^{N-1} m_k$	$\sum\nolimits_{k=0}^{N-1} {{{H}_{k}}}$
0	1.000000	336	70.939687
1	0.211130	214	4.676390
2	0.543142	281	29.234550
3	0.366540	242	12.005676
4	0.441766	261	19.545568
5	0.396836	256	17.418943

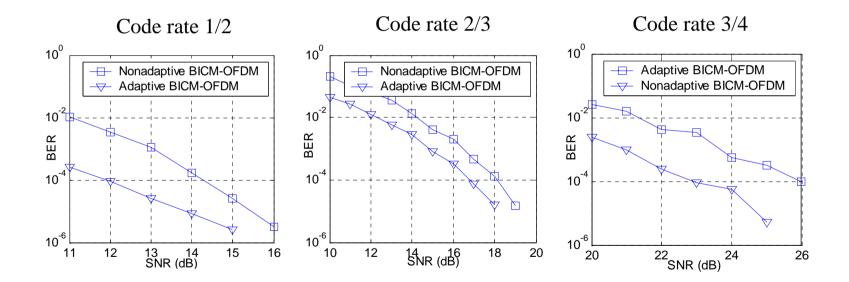
Simulation parameter


- Coded bits per Subcarrier, $m = \{0, 1, 2, 4, 6, 8\}$
- 64 subcarrier, 4.0μs OFDM symbol duration
- Exponentially decaying multipath intensive profile (MIP)
- Delay spread of $\tau_{\rm rms} = 0.2 \mu s$, $\tau_{\rm max} = 0.8 \mu s$

64-state rate-1/2, 2/3, 3/4 convolutional code with generator (133_8 , 171_8)


Bit allocation result

Bit allocation result when SNR is 18 dB and the number of coded bits per OFDM symbol is 256.


BER result

Coded bits/OFDM symbol = 128

BER result (2)

Coded bits/OFDM symbol = 256

Concluding remarks

- Adaptive bit-loading scheme for BICM-OFDM system was considered.
- BER bound is minimized under the constant throughput.
- Coded bits were allocated to each subcarrier using discrete Lagrange optimization.
- Simulation results show that adaptive BICM-OFDM system got the SNR gain by 2~3 dB over nonadaptive one.